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Abstract

The aim of this present work is to study the blow-up dynamics and lifespan estimates for solution to higher dimensional
Klein-Gordon Equation in subcritical case, in which 1 < p < p,.. We construct the equation of motion from the
Lagrangian of Klein-Gordon with non-minimal coupling, where the coupling interaction of the scalar field is proportional
to the scalar curvature of the spacetime. The equation of motion has the form like nonlinear damped wave equation with
mass. The novelty of this work is the time dependent of nonlinear term. We use test function method to proof the lifespan

estimate.
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INTRODUCTION

Consider the following nonlinear damped

wave equation with mass

Uee — A+ iy (14 )%, + 21+ )Pu = F(u)
1)

with py,u3 € R. we classify the damping term as:
overdamping case (a > 1), scattering case (x < —1),
effective case (—1 < a<1), and scale-invariant
case (ax = —1). In recent years, the study of Eq.(1)
has become an interesting and unfinished problem
including the wellposedness and blow-up dynamics
with various assumptions of damping, mass, and
nonlinear term, i.e effective case [2] , scattering case
[3,5], scale-invariant case [6,7] and also the
references therein.

In this paper, we study the blow-up dynamics
of higher dimensional Klein-Gordon equation with
nonminimal coupling which has the similar form
with Eq.(1). We focused on the scale-invariant case
in which a = —1 (and § = —2). Let us consider the

* Corresponding author.
E-mail address: mirda.prisma.wijayanto@students.itb.ac.id

higher dimensional spatially flat spacetime which can
be constructed by d-dimensional spatially flat
Lorentzian manifold denoted by M?, d > 4 with
standard coordinates x* = (x° =¢, x!), p=
0,1,..,d—1,and i =1,2,...,d — 1 equipped with
the Lorentzian metric with the signature {—1,1, ...,1}.
We write down the metric as

a-1
ds? = —dt? +a?(t) Z dx?, (2)
i=1

with x! denotes the Cartesian coordinatees for R%~1,
Defining a new time coordinate denoted by
which follows the conformal transformation

dz 1
i a 3)
thus we rewrite the metric (2) as
d-1
ds? = a?(r) [ —dr? + Z dx? |. 4)
i=1

Now our spactime M? is conformal to flat
Minkowski space M%*1 ~ R x R4~1. From the
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metric (2) we get Ricci tensor and the scalar curvature
Ry = H(ny — (d — 2)808Y)
+H2(d = 2)(nw +6260), (5)
R=(d—1a"2(2H + (d — 2)H?), (6)
assuming that the scale factor a = a(z) belongs to

C™ function with n > 2, for all T > 0. Moreover, we

define the Hubble parameter H = %with a= 3—:.

Next, we define the action of real scalar field
on the higher dimensional spatially flat universe as a
background with additional non-minimal coupling
where the coupling interaction of the scalar field ¢ is
proportional to the scalar curvature of the spacetime.
The action of real scalar field has the form

1 $
S = [drdx,/—g <§ 9,0t + ER(p2 — V(cp)),

()
where g and R are the determinant and the scalar
curvature of the metric (4). The second term of the
R.H.S of (7) describes the non-minimal coupling
with positive constant . The real smooth function
V(¢) denotes the scalar potential which satisfy the
condition V(0) = 0 dan 9,V (0) = 0.

Throughout this paper, we use
assumptions as follows:
a. The damping term is describe as the Hubble
parameter varies of time

some

H(@) = Hy(1+7)™" ®)
b. The scalar potential has the form
€
- __ p+1
V() erlIcpl , 9)

with € is a small positive parameter and p > 1.
Thus we have,

(d — 2)H,
@ — L@ + 1—+T(pT
§(d — 1)(=2H, + (d — 2)Hg)
(1+1)2

= e(1+1)*0 |ol?,

@(10,%) = f(x) € (RTY),

@:(70,x) = g(x) € (R*"?),

forall t > 7y, x € R4, (10)
Let us introduce a new parameter

8§ = [(d—2)H, — 1]?

—4%8(d — 1)[~2H, + (d — 2)H;] (12)
describing the relation of damping and mass term. In
the case 6 > 0, the damping term is more dominant
than the mass term.

In the previous works [1,4,8], the
wellposedness problem of (10) has been studied. In
the present work, we study the blow-up dynamics and
lifespan estimate for solution in subcritical case, in
which 1 < p < ps.. The novelty of this work is the
time dependent of nonlinear term.

MAIN RESULTS

We introduce a notion of energy solution by the
following definition.
Definition 1. Let f € HY(R%1) and g € L2(R4™1).
We define ¢ as the solution to (10) on [z, T) if
@ € C([1o, T), H*(RT™V)) n ' ([7o, T), L2(RED)),
(12)

satisfies

Jra=1 @0, ) D (T, x)dx = [y @1 (To, ¥) D70, X)dx

— [ Jgaer @:(5, 0 (s, %) dxds

+ f:o Joa=1 V@ (s,x) .V(s, x) dxds

T (d-2)H,
(S50

&(d-1)(-2Ho+(d—2)HE)
(1+s)2

= efo (1 + s5)?Ho| (s, x)|P (s, x) dxds,
o JRA-1

(13)
for any ¢ € C5°([r, T) X R4™*) and T € [z, T).

(s, x)) ¢(s, x) dxds

We state the blow-up dynamics and lifespan
estimates for the solution of (10) in subcritical case
as follows.

Theorem 1. Let d > 4. We assume that the initial
data fe HY(R%') and geL?(R4) are
compacly supported in By == {x € R4 1:|x| < R},
and non identically zero. We define § = 0 as in (11)
with non negative damping coefficient and mass such

that Ho = ——.
Let ¢ be a solution of (10). In subcritical case
1 < p < pge, We obtain that ¢ blow up in finite time

with lifespan T = T(¢). Furthermore, T (e) fullfiles
the estimate

2(p-1)
T(e)<Ce Ysc , (14)
with
2 8
Ysc == —dp” + (E + d) p+4 (15)
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where C is a positive constant independent of €. In
addition, p, is the positive root of y,. = 0 as

B —td+ (ﬁ+d)2+16d (16)
pSC - 2d .

TEST FUNCTION FOR SUBCRITICAL CASE

We will proof Theorem 1 using test function method.
First, we define the modified Bessel function of the
second kind of order v

K, (1) = f: exp(—tcoshz) cosh(vz)dz, (17)
v € R4~ fullfiles the equation

< dT2+T——(‘L’ —v2)>JC (r) =0, (18)

fort > 0.
We define the auxiliary function with respect
to the time variable

—2)Hg+1
2 K@(l +7),T=0, (19)
2

fullfiles the equation
1 +02220 (@ - 2)Hy(1+ )LD 4 ((d -
2)Hy +&(d —1)(—2Hy + (d — 2)H§) a+

T)Z)A(T) =0,7> 0. (20)
Then, we define
v = [ ewodn 1)

which satisfies

Mp(x) = (), (22)

and the asymptotic estimate

PCO ~ Caylal ™ T el (23)
as |x| — <. Now, we define the test function for the
subcritical case

Y(z,x) = MDY (). (24)
We use the test function to derive a lower
bound for |@|P in the following Lemma.
Lemma 1. We define the initial data f and g such
that supp(f, g) € Bg with R > 0. Then, we have a
local energy solution ¢ satisfies
supp @ € {(1,x) € [15,T) X R*':|x| <t + R}
(25)
There exists t, independent of f and g, such
that forany t > tyandp > 1, it satisfies the estimate
“1+ﬂ%ﬁbmﬁnmgf
Rd-1
where C = C(f,g,¥,p,R) > 0.

lo|Pdx, (26)

Proof. We claim that the support of @(.,7) is
contained in B(zy, T + R) since the supports of f and
g are contained in B(t,, R). Hence, the statement
(25) is fullfiled. Then, we define functional

F) = f (7, )W (7, x)dx. 27)
Rd—l
By Halder inequality we obtain
, -(p-1)

|F(o)IP (f|x|ST+R‘Pp (T,x)dx) <

Joa-1l@ (T, )P dx, (28)
with~ + = = 1.

14 14
Next, we determine a lower bound for

|F(t)|? and an upper bound for

-(p-1)
<f wr' (g, x)dx) .
|x|<T+R

From the definition of energy solution, we have

T
f f Pss Pdxds —f f @AY dxds
To RA-1 RA-1

o [ (R

(d —2)H,
=9 (T“’) ‘P
£€(d — 1)(=2H, + (d — 2)H?)
1+ 5)2 Yo dxds

= € J Jpas(1+ 9)20l(s, 0P W dxds.  (29)

Using the relation Ay =1 and definition
(20), we obtain

fRa 1 (CPS‘P Yip +——— (p‘P) dx|7, =

€ fTo Ja-1(1 + 5)?Ho Icp(S, x)Ip ¥ dxds. (30)

Since the R.H.S of (30) is positive, we obtain
Fio)+ (20— o “’)) FO) =G,  (3)

AlT)
with

Cr.g = Jga- <g(x)7\(10) + (%A(TO) -

(d z)H0

X (To)> f (x)> P(x)dx. (32)

(1+1)(@-2)Ho

Ve and

Multiplying both sides with

integrating over [z,, 7] such that

F@ 2 (22 (H2) T by

A(To) 1+7T

T (d—2)H (d-2)H
+fTofRd_1 as( 1+s OqJ(p) — 05 ( 1+s Olp)(p +

c 22(7) fT (1+s)(@-2)Ho
.9 (140)@DHo Jzy~ 22(s)

(33)
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Moreover, using the derivative identity of modified
Bessel function we obtain
(:1—2)1—10 MT ) — N (1) = (d=2)Hy—1-V6

1+ 2
(1 +‘T0) jCJ_(l +‘T0)
(d-2)H
+(1 + To) :K:@+1(1 + To). (34)
2

Since f and g are compactly supported initial
data, hence Cr, is finite and positive. Using the
definition of (19) and F (z,) = 0, we obtain the lower
bound for |F(7)|P as follows
|F(7)|P > Cf’"g(l + T)pJCfgp(l + 1)

2
p

T ds
fTo (1+s)ﬂcj_3(1+s) 2 0. (35)
2

Then, we estimate

(flxlsr+R WP (7,x)dx
-1)+1

(d=2)(H
< Cu_;,(zf_l)(l 4 7) @ D-H——

)—(P—l)

x e—v<T+R>ychp(1 + 1), (36)
2
where Cy,  is a positive constant.

Combining the estimate (28), (35), and (36),
we get
CP CJ, P(1 4 )P~ (@ D@-1)- Wp

p
-p(t+R) /P T ds
€ K@(l + T) f‘fo (1+s)?€\%(1+s)
2 2
< fRd_llcplpdx. (37)

Now, we use the limiting behavior of X, (1)

such that
p

s —
K\%(l +1) ~ (2(1+‘r))2 € p(Hl)' (38)
2
and
1 1 .20+
L, (T+5)K 75(1+5) ds = ;e ' (39)

z
Finally, we rewrite the estimate (37) as
follows
d—2
Cl(l +T)T[2—(Ho+1)p] Sf

Rd-1

l@lPdx,

_3p _ oy P
where C; :== 272 CﬁgCi,Rpep(l R ™3,
This completes the proof of Lemma 1. [ ]

PROOF OF THEOREM 1

We start the proof by define the functional

G(1) = f o(t,x)dx. (40)

RA-1
Then, we choose ¢ = ¢p(s,x) satisfies b =1 in
{(x,s) € [1g,T] x R*"1:|x] <s+ R}, such that
from (13) we have
7 (d-2)Hy -, £(d-1)(-2Ho+(d-2)HE)

G"(7) + e G'(7) + RESE G(1)
= € Jpa1 (1 +5)* 0] (s, x)|P dx. (41)

Let us define the quadratic equation
r2—((d—2)H, - 1)r +

§(d — 1D(-2H, + (d — 2)H§) = 0, (42)
which has the roots
(d-2)Hy—1-V6 (d—-2)Hy—1+V6

n=——, o =, @
with 6 = 0. Thus, we can rewrite (41) as follows
%(G'(T) + [—;TG(T)) + 22 ('@ + 2 6)
=€ Jpa (1 + s)ZHOI(p(s, x)Ip dx. (44)
Multiplying both sides by (1+17)™=*! and
integrating over [z, 7], we obtain

(1 + )72+ (c () + G(T)) — (14102

(o )

=€ fTo fRd_l(l + S)ZHO‘LrZ“IcpIp daxds. (45)
Since the initial data is non negative, we have
G'(1) + =6 >e(l+10)° (rz+1)

X f,o fRa-l(l + 5)2Ho* 72+ p|P dxds. (46)

Multiplying both sides of above inequality by
(1 + )™ and integrating over [z, 7], we obtain
A+1)"G() — A +19)"G (1) >

ef 1+ 1)1+ D Jig fpama (1202 QP g g g
(47)

Furthermore, using the non negative condition of the
initial data we obtain

G(r) > €(1 4 1) T 1O

X frto Jeama (1 + 5)2Ho*72*+1 | @|P dxdsdt. (48)
Substituting (26) to (48), we obtain
Gr)=zeC;(1+1)™ fTTO(l + t)iT2-1

x ft (1 +S)2H0+r2+1+dz;2[2—(H0+1)p] ds dt
To

d—
@D (Ho+1)p

> €C,(1 4 1) 212
x (T —19) 72t (49)
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with CZ = m

Now, we obtain lifespan estimates for solution
(10) using iteration argument as follows. Applying
Holder inequality to (48), such that

G() =2 eCo(1+1) [f (pyramCz+D
X f:o(l + 5)2H0+r2+1+(d—1)(1_p)|G(S)|p dsdt, (50)
where

Co = (meas(B1))1_pR‘(d-1)(p—1) >0. (51)
We assume that
G(®) = Dj(1 +1)"% (1 — 7)Y, (52)

for T>1, j=123,.., and Dja;b; to be
determined later. For j = 1, from (49) we obtain

Dl = GCZJ (53)
d—2
a1=rz+1—2Ho+( )(Ho+1)p, (54)
b1=d+T2+1. (55)
Substituting (52) to (50), we obtain
G(T) > ECO(l + _L_)—Tl f:0(1+t)r1—(rz+1)
T
X f 1+ S)2H0+r2+1+(d—1)(1—p)
X DP(1+5)7P% (s — 10)P?) dsdt.  (56)

Moreover, we use the same method in deriving (49)
to obtain
eCODJp

G(t) =
@ (rz + pb; + 2)(r2 + pb; + 3)

% (1 + ,L.)—r2—1+2H0+(d—1)(1—p)—paj

X (‘L’ _ To)r2+pbj+3. (57)
From (57) we have

ECO p

Djv1 = (r2+pbj+2)(r2+pbj+3) J ’ (58)
aj1 =12 +1—-2Hy— (d—-1)(1-p) +pa;, (59)
bj+1 = TZ + pbj + 3. (60)
Hence, from (54), (55), (59), and (60), we obtain

- 1
a; = ap’ 1—[E(r2+1—2H0)+d—1], (61)

. , +3
bh;, = Jj-1 _ ,

i = Bp - (62)
forany j = 1,2,3, ..., and the positive constants
a=(r,+ 1—2HO)( =)+ 2 (Hy + Dp )

+d —1,
ﬂ=d+r2+1+T2+3. (64)
p—1
In addition, from (60) and (62) we have
bis; =1 + 3 + pb; < p’p. (65)

Thus, from (58) we have

DP
J
Djy1 2 C3 o2 (66)
where
ECO ECO
T PN
Now, we calculate
j-1
log D; > p/~*logD; — 2logp Z kpi—1-k
k=1
+log Cs Zk 1P~ (68)
Using the relation
j-1 .
. 1 [p/—-1
S iepsiok = —( _ j>, (69
] p—1\p—-1
and
j-1 j
pk = ?’1_ P~ (70)
=1 -p
we obtain
) j-1 __2plogp | plogCs
logD; = p (log Dy 12 + 1 )
2logp (. L_plogc3
+ p—1 ( + p—1  2logp ) (71)
Forj + ——— 2% 5 1 we have
p—1 2logp
D; > exp{p’/~*(log D, — C,)}, (72)
with C, Zp 2plogp plogCs
p—1)2 p—-1

Substltuting (61), (62), and (72) to (52) we
obtain

6@ 2 e (p190) (@ + ol T

r2+3

(r+1-2Ho)+d-1]

X (t = 10) 71, (73)
where
J(@) =logD; — C, — alog(1 + 1)
+B log(t — 7¢). (74)
Fort > 27, + 1, we obtain
J(@) = log(D;(t — 19)F%) — C, — alog2,
(75)
where
Bz 4+ 4Hop — (d — 2)(Ho + Vp(p — 1)
20— 1
(76)
For J(z) > 1, we obtain
Cp,+alog2+1\ %P
T—TO>(—” ’ ) | )
Dy
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From the estimate (73) we know that if j — oo then
G(t) - <o, and as the consequences ¢ — © in the
finite time. In addition, we define 6 > 0 as in (11)
with non negative damping coefficient and mass such

that Hy > dZTz' Thus, we obtain

2(p-1)
eCp+a log2+1 Vsc

T > max T0+< > , 2T+ 1 ¢,
D,

(78)

with

2 8

Ysc = —dp”® + (m + d) p + 4. (79)

Finally, we obtain lifespan T =T(e) of ¢
fullfiles

_2(p-1)
T(e) < Che  Vsc (80)
2(p-1)
. eCp+oclog2+1 Ysc i
with €, = (C—) . We define p,, as the
2
positive root of y,. = 0 as follows,
8 8 2
_—d_2+d+\/(—d_2+d) +16d (g1
e 2d '

such that for 1 < p < ps,, the solution ¢ blow up in
finite time. This completes the proof of Theorem 1.
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